

Introduction to Tribology

Anna Igual Munoz

Laboratory of tribology and interfacial chemistry

Science of surfaces in relative motion

EPFL Definitions

- Etymology: from greek "tribos" (to rub) and "logy" (knowledge)
- « Tribology is the science and practice of interacting surfaces in relative motion and of the practices related thereto. »

P. Jost in: Lubrication (Tribology) education and research, A report on the present position and industrial needs, HMSO (1966)

It hence studies the principles of friction, wear, and lubrication

Friction 5(3): 233-247 (2017) https://doi.org/10.1007/s40544-017-0173-7 ISSN 2223-7690 CN 10-1237/TH

REVIEW ARTICLE

Gwidon W. STACHOWIAK

Tribology Laboratory, School of Mechanical and Civil Engineering Curtin University, Bentley, Western Australia 6102, Australia Received: 09 May 2017 / Revised: 25 May 2017 / Accepted: 07 June 2017

© The author(s) 2017. This article is published with open access at Springerlink.com

Abstract: Movement between contacting surfaces ranges from macro to micro scales, from the movement of continental plates and glaciers to the locomotion of animals and insects. Surface topographies, lubricant layers, contaminants, operating conditions, and others control it, i.e., this movement depends on the tribological characteristics of a system. Before the industrial revolution, friction and wear were controlled by the application

of animal fat or oil. During the industrial revolution, with the introduction of trains and other machinery, the operating conditions at the contacting surfaces changed dramatically. New bearings were designed and built and simple lubrication measures were no longer satisfactory. It became critical to understand the lubrication mechanisms involved. During that period, solid theoretical foundations, leading to the development of new technologies, were laid. The field of tribology had gained a significant prominence, i.e., it became clear that without advancements in tribology the technological progress would be limited. It was no longer necessary to build oversized ship bearings hoping that they would work. The ship or automobile bearings could now be optimized and their behavior predicted. By the middle of the 20th century, lubrication mechanisms in nonconformal contacts, i.e., in gears, rolling contact bearings, cams and tappets, etc., were also finally understood.

Today, we face new challenges such as sustainability, climate change and gradual degradation of the environment. Problems of providing enough food, clean water and sufficient energy to the human population to pursue a civilized life still remain largely unsolved. These challenges require new solutions and innovative approaches. As the humanity progresses, tribology continue to make vital contributions in addressing the demands for advanced technological developments, resulting in, for example, reducing the fuel consumption and greenhouse gases emission, increasing machine durability and improving the quality of life through artificial implants, among the others.

Keywords: tribology; friction; lubrication and wear

CAUTION

FLOOR

Tribology as part of our lives

In our everyday life we take many things for granted. It never occurs to us to pause and think why our hands or feet provide a perfect grip on most of the surfaces. We rarely think why sharks swim so fast or why geckos can walk on glass surface even when

would stop exactly at the designated places at train stations and airports. When hopping into a car we don't think twice about the material used for the car seats. We don't think often why the tectonic plates or glaciers move with apparent ease. These seemingly diverse problems, and many others, are of great interest and research focus of tribologists. Tribology has helped

Introduction to Tribology

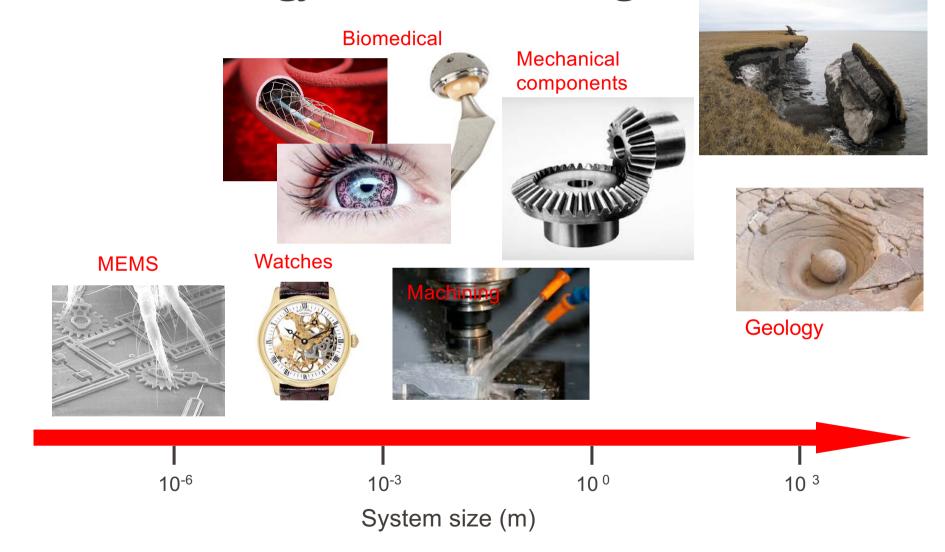
EXAMPLES

- Some phenomena ruled by friction :
 - Grasping objects

Assembly strength (screw, nails, bolts)

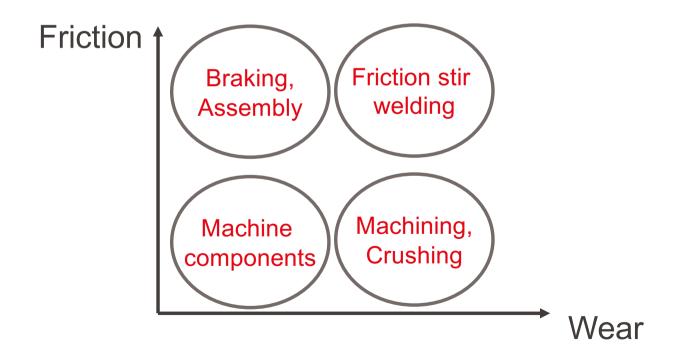
Landslides

Writing


■ Tribology and Surfaces Interactions 2023

Braking

Some tribology-related technologies


Some present challenges and opportunities for tribologists

- Hydrogen economy: Storage, generation, transportation, utilization
- Transportation (modern electric vehicles): Optimization of gears and dynamic seals (still 57% of the losses are due to friction) Farfan-Cabrera Tribology International (2019)
- Energy conversion: wind mills (low speed systems and high loads, marine environment, current generation)

Technological and economic aspects

 Wear and friction are not necessarily negative phenomena to be absolutely avoided!

1 Tribology and Surfaces Interactions 2023

EPFL

1. Concept

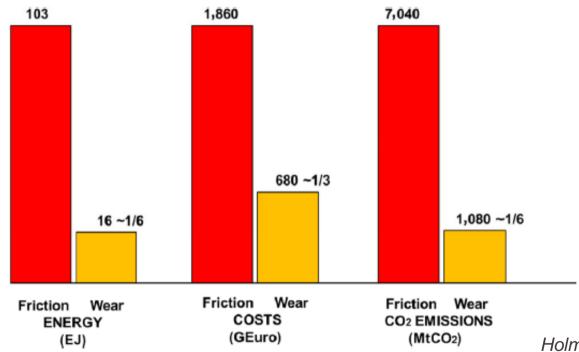
2. Relevance

- 3. Tribological contacts
- 4. Surfaces
- 5. Contact mechanics
- 6. Friction
- 7. Wear
- 8. Lubrication
- 9. Tribological system

Impact of economy

Country	Cost /year	Potential savings
UK	24 £billion	2 £billion
Canada	3.7 C\$ billion	0.83 C\$ billion
Spain	-	13.2 €billion (1.4% of the country's GDP)

Good practice of tribology saves money....among others


Energy impact

- ~23% (119 EJ) of the world's total energy consumption originates from tribological contacts.
 - 20% (103 EJ) to overcome friction
 - 3% (16 EJ) to remanufacture worn parts and spare equipment due to wear
- Potential reduction 40% in the long term (15 years) by:
 - New surfaces
 - Materials
 - Lubrication technologies for friction reduction and wear protection

Tribology and Surfaces Interactions 2023

CO_2 emission by friction accounts for 1/5th of global CO_2 emission (35.000 Mt CO_2)

Energy consumption, costs and CO₂ emissions due to friction and wear

Holmberg et al. Friction 5(3): 263-284 (2017)

Environmental impact

- Tyre wear particles:
 - EU: 1.300.000 tons/year
 - Average size 25 μm (4-265 μm)

- Wear of implants:
 - Hip joints: 100.000 particles/step in the body (MoP)

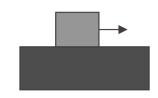
Source: Baensch-Baltruschat et al. Science of the Total Environment (2020)

Savings

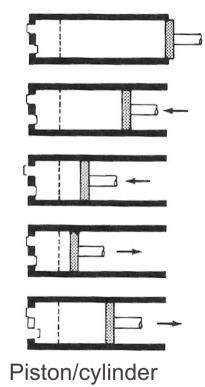
 Possible annual savings in Great Britain (1966) by using modern tribological solutions.

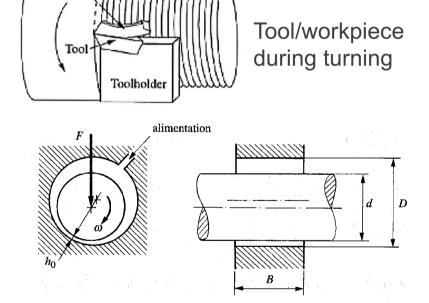
Maintenance	1300 MEuro
Production breakdowns	650 MEuro
Longer life of machines	550 MEuro
Better efficiency of machines	150 MEuro
Energy savings from reducing friction	150 MEuro
Production savings	50 MEuro
Lubricant savings	50 MEuro

Source: H. Czichos, K.H. Habig, Tribologie Handbuch, Vieweg (1992)

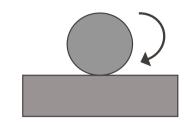


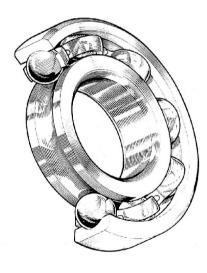
- Concept
- Relevance


3. Tribological contacts

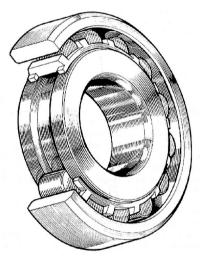

- Surfaces
- Contact mechanics
- Friction
- Wear
- Lubrication
- Tribological system

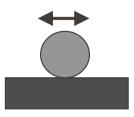
Sliding contacts (sliding wear)

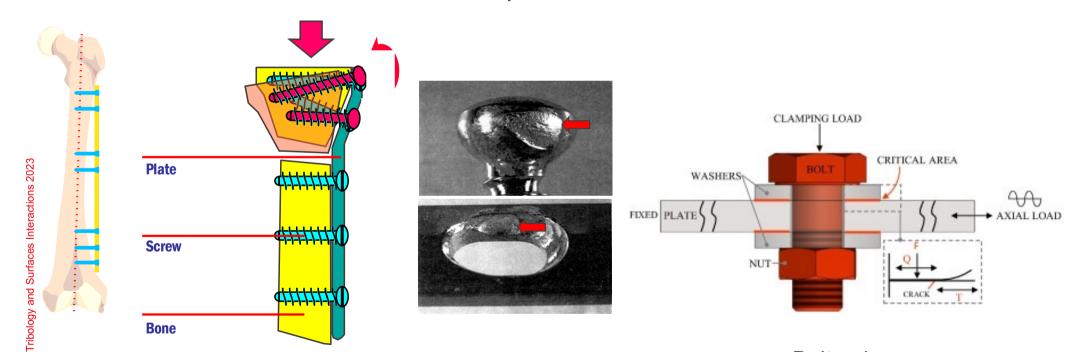



Axle/cushion in a bearing

Rolling contacts (rolling wear)


A round body rolling on a counter body



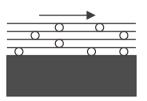


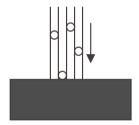
Roller bearing

Fretting (fretting wear)

Low amplitude relative motion (vibration) of two interacting bodies
 Wear due to small relative displacements

Screw/plate for orthopaedic fixation : micromovements


Bolt unions


Other tribological situations

- Particles carried by a fluid sliding over a body
 - → Erosion

- →Impact wear
- Gas particles imploding in turbulent fluids
 - → Cavitation (cavitational wear)

- 1. Concept
- 2. Relevance
- 3. Tribological contacts

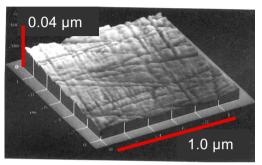
4. Surfaces

- 5. Contact mechanics
- 6. Friction
- 7. Wear
- 8. Lubrication
- 9. Tribological system

Surfaces: the elements through which solids contact

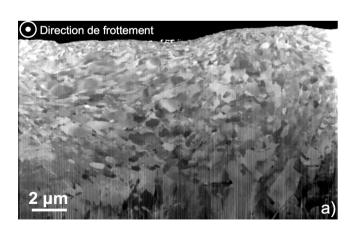
2 dimensional (planar) defect with certain thickness

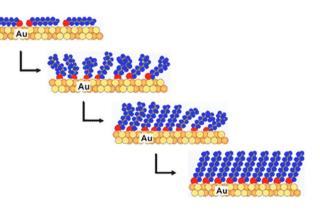
Silicon wafer: atomically flat, uniform chemistry


Steel pipe: rough, partially rusted

Tribology and Surfaces Interactions 2023

EPFL


Surfaces: not simple, neither flat


- Topographical features: roughness...
 - · Contact area, contact stresses, wetting

Mirror polished steel surface: AFM image

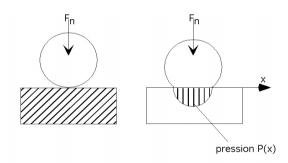
- Chemical features: adsorbed molecules, oxides...
 - Influences friction
- Microstructural features:
 - Influences wear

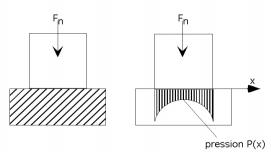
"Putting two solids together is rather like turning Switzerland upside down and standing it on Austria – the area of intimate contact will be small"

F.P. Bowden

- Concept
- Relevance
- Tribological contacts
- Surfaces

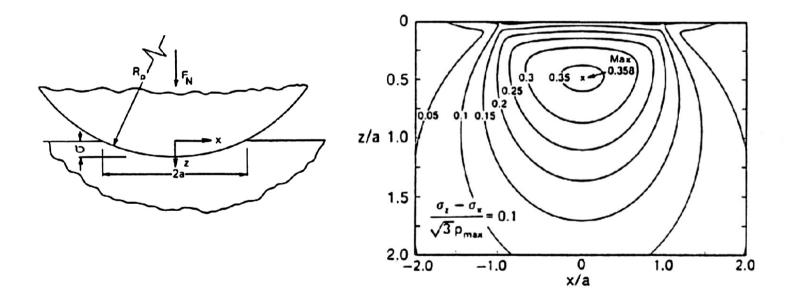
5. Contact mechanics


- Friction
- Wear
- Lubrication
- Tribological system

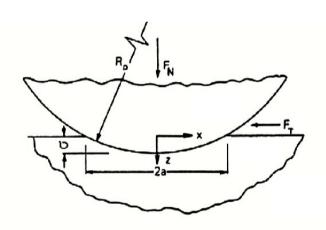

Study of the amplitude and distribution of mechanical stresses in a contact.

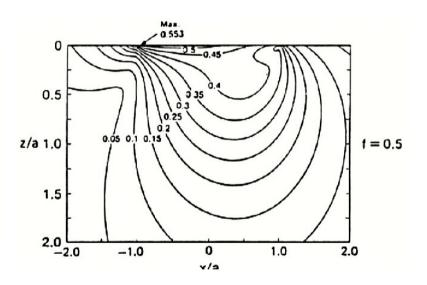
Conformity of the contact

Non-conformal contact:


Conformal contact:

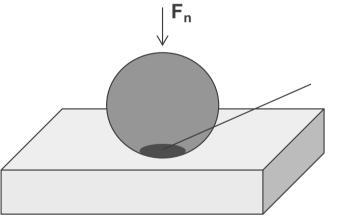
Ball-plane contact


Distribution of the shear stresses in a ball-plane contact :



Source: H. Czichos, K.H. Habig, Tribologie Handbuch, Vieweg (1992)

Effect of tangential force


Ball-plane contact : numerical calculation

Analysis of elastic stress fields

- Hertz mechanics for non-conformal contacts:
 - Calculation of elastic strain and stress in terms of load, geometrical parameters and materials.

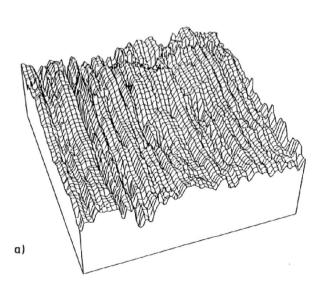
Ball-plane contact

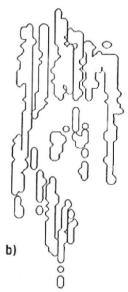
Elastic deformation defines the contact area.

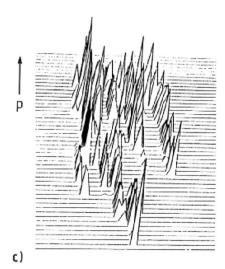
Tribology and Surfaces Interactions 2023

Hertz Contact Mechanics Formalism: example for a ball-plane contact

- Radius of contact area (circle) $a = \left(\frac{1.5F_nR}{E'}\right)^{\frac{1}{3}}$
- Maximum contact pressure $p_0 = \frac{3F_n}{2\pi a^2}$
- Average contact pressure $p_m = \frac{F_n}{\pi a^2}$
- Maximum deflection $w = 1.31 \left(\frac{F_n^2}{E^{12}R}\right)^{1/3}$
- Maximum shear stress $\tau_{\text{max}} = \frac{p_0}{3}$
- Depth of maximum shear strength $z = 0.638 \cdot a$


$$\frac{1}{E'} = 0.5 \left[\frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2} \right]$$

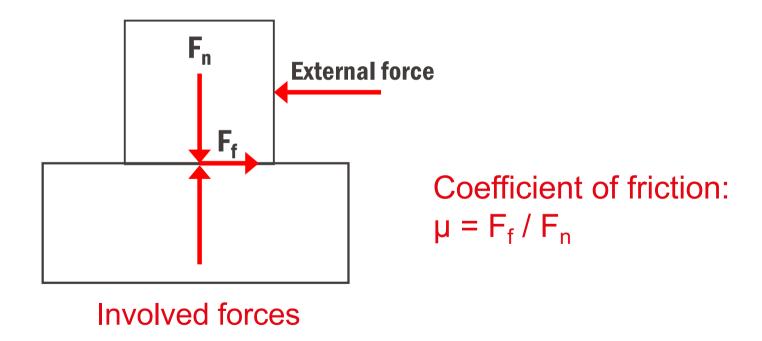

E = Young's modulus v = Poisson's ratio


Tribology and Surfaces Interactions 2023

Roughness effect

- Numerical simulation of a model Hertzian contact with a rough steel surface (F_n = 25 N, p_0 = 1 GPa, elliptical contact area : semi-axes 78 μ m and 162 μ m).
 - a) Representation of the steel surface : area 0.5 mm2, maximum relief 4.4 μm)
 - b) Contour of the contact area
 - c) Pressure distribution (maximum value **7 GPa**)

West & Sayles, 1988

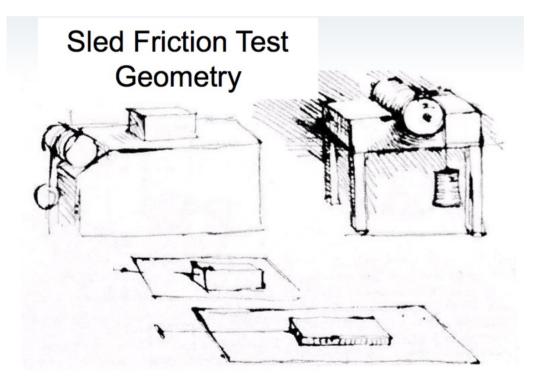

- Concept
- Relevance
- Tribological contacts
- Surfaces
- 5. Contact mechanics

6. Friction

- Wear
- Lubrication
- Tribological system

What is friction?

 Tangential force (F_f) at the surface between two bodies preventing (static friction) or opposing to (dynamic friction) the relative motion of the two bodies caused by an external force.



Motivation to study friction: machine conception

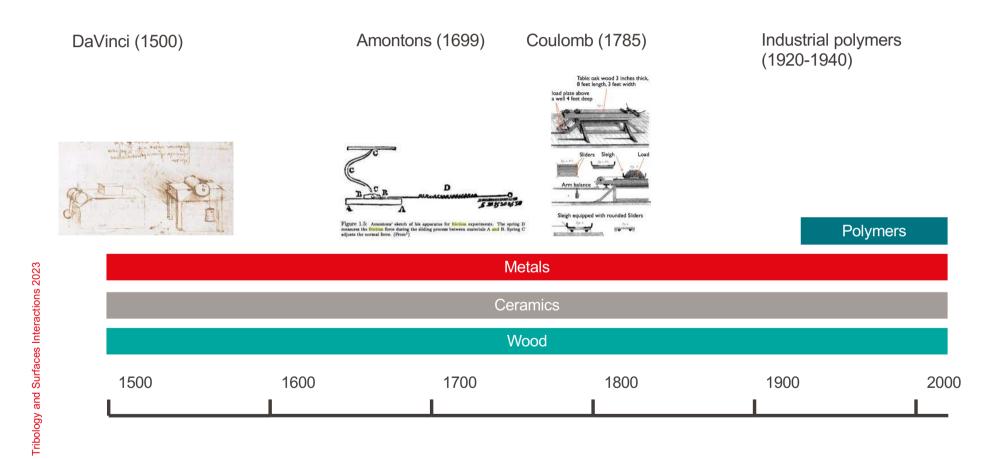
- The friction force is proportional with the applied normal force
- The friction force is independent of the nominal/apparent area of contact

Leonardo Da Vinci

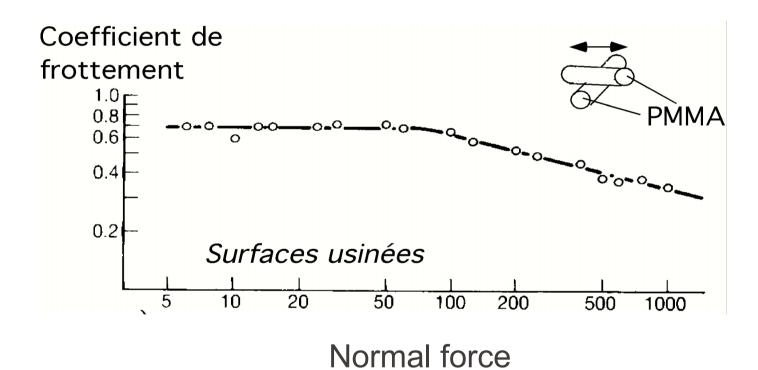
EPFL Friction laws

Amonton's laws (1699) – actually already proposed by Da Vinci (1500):

- 1. The friction force is proportional with the applied normal force: Ft = μ Fn
- 2. The friction force is independent of the nominal/apparent area of contact

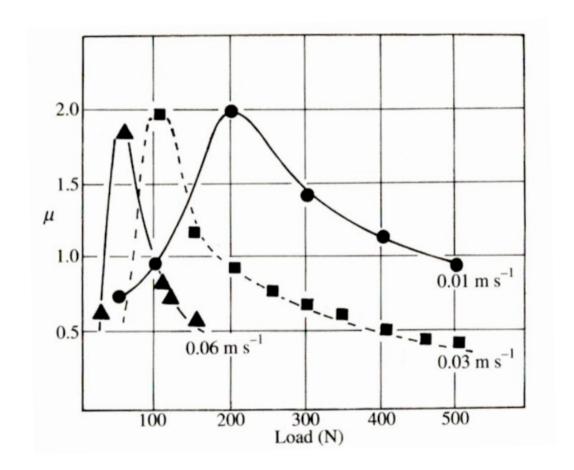


EPFL Friction laws


Amonton's laws (1699) – actually already proposed by Da Vinci (1500):

- 1. The friction force is proportional with the applied normal force: Ft = μ Fn
- 2. The friction force is independent of the nominal/apparent area of contact
- 3. The friction force is independent of sliding speed (Coulomb's law of friction, 1785)

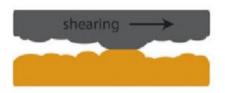
Friction history


What about polymers??

Source: Hutchings & Shipway "Tribology" (2017)

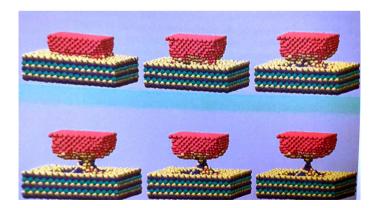
EPFL What about polymers??

 CoF versus normal load for three sliding speeds for nylon on steel


Source: Williams "Engineering Tribology" (1994)

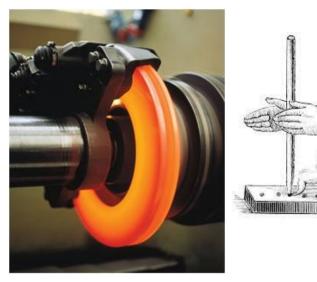
Origin of friction

"Interfacial friction is caused by the ploughing of asperities in the mating surface and adhesion forces between the interacting asperity summits"


F.P Bowden and D. Tabor (1942)

 Adhesion: due to the shear resistance between contacting surfaces.

 Ploughing: due to resistance of surface asperities ploughing the contacting surface.



Source: Hutchings & Shipway "Tribology" (2017)

Consequences of friction

Energy dissipation: heating

Surface traction: shearing, failure, wear

Friction is a system parameter – not a material parameter!

EPFL

EPFL	
-------------	--

Influence of	Diagram	Parameter	COF
Sliding partner (X)	X Steel 1032	Al6061 T6	0.38
		Copper	0.28
		Steel 1032	0.23
		Teflon	0.07
Contact configuration	Al 6061 T6 Ti6Al4V		0.38
	Ti6Al4V Al 6061 T6		0.29
Environment	Fe Fe	Vacuum	> 4 (seizure)
		10 ⁻³ mbar O ₂	1.50
		1 mbar O ₂	0.40
		Oil film	< 0.10
Roughness	Steel SS a-C:W coat	R _q 390 nm	0.31
		R _q 220 nm	0.20
		R _q 120 nm	0.09
		R _q 68 nm	0.09

- Concept
- Relevance
- Tribological contacts
- Surfaces
- Contact mechanics
- 6. Friction

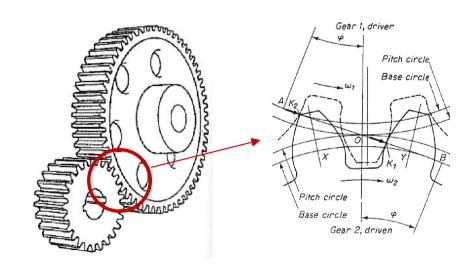
7. Wear

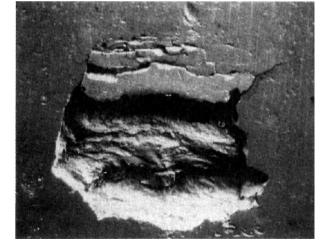
- Lubrication
- Tribological system

Definitions with very different implications

- Deterioration throughout prolongated use, due to friction
- Progressive loss of material from the surface of a solid body due to mechanical interactions occurring during contact and relative motion with a solid, liquid or gaseous counter body.
- These two notions are not necessarily related :
 - **Durability** of a system functionality
 - Loss of material

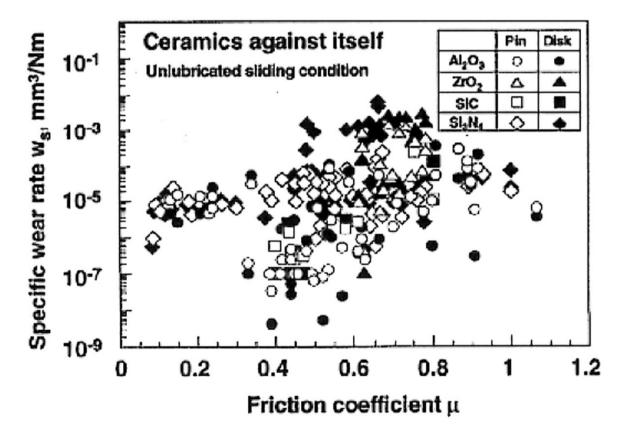
Example of progressive material loss


Tyres: loss of functionality due to the progressive material removal.



Example of sudden loss of function by wear

 Gears: loss of functionality due to the sudden removal of a single tiny particle after long operational periods without any significative loss of material.



Fatigue failure of a bearing steel component.

H. Czichos, Tribology, Springer 1978

Wear rate and friction (Kato 2001)

No obvious correlation between these two parameters.

First wear study: gold coins and material loss

Experiments and Observations on the various Alloys, on the specific Gravity, and on the comparative Wear of Gold. Being the Substance of a Report made to the Right Honourable the Lords of the Committee of Privy Council, appointed to take into Consideration the State of the Coins of this Kingdom, and the present Establishment and Constitution of His Majesty's Mint. By Charles Hatchett, Esq. F.R.S. Read January 13, 1803. [Phil. Trans. 1803, p. 43.]

- Experimental conditions (Charles Hatchett 1803):
 - Material: Type of gold (ductile or hard)
 - Topography: coins with flat, smooth, and broad surfaces and coins with protuberant parts
 - Mechanical variables: sliding speed, pressure, type of contact and contact geometry
- Quantification of wear: coin weight loss

EPFL Wear formalism

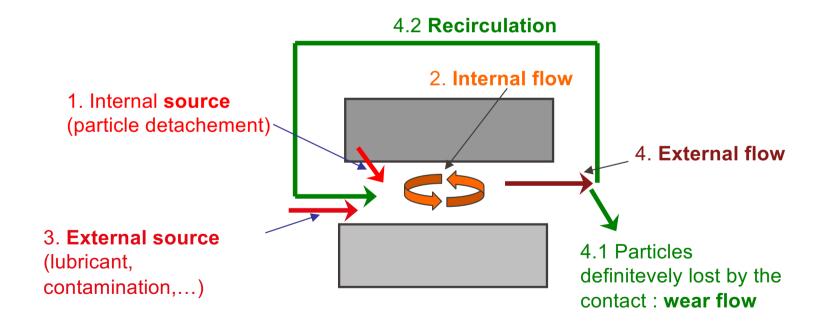
Outcome of two centuries of scientific effort to quantify wear:

Numerous equations available for wear.

Meng and Ludema (Wear 181-183(2) (1995) 443-457) identified:

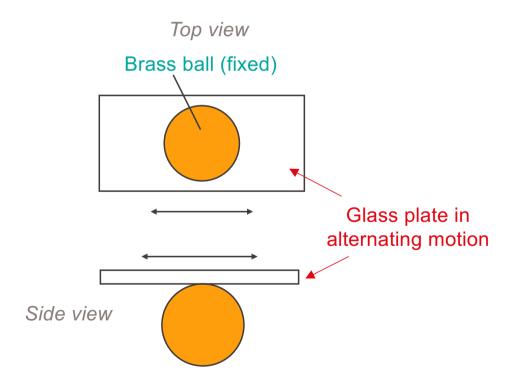
182 equations for wear published between 1955 and 1995.

625 involved variables, either as numerator or denominator


- No single predictive model/equation of wear exists per today.
- Wear involves chemical and physical interactions with the mechanical components – difficult to model.

No universal formalism!

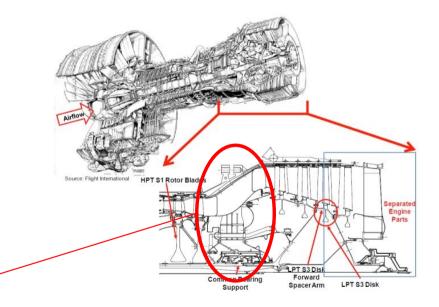
Existing laws apply to very specific cases only!


More than a mass loss: Third body concept and material flow

Wear can be described as a flow of particles:

Experimental evidence

 Microscopic observation of the formation of a third body on a glass/brass contact.



Wear of bearings in 4 engine planes

Wear of bearings mounted in external engines more severe than in internal ones.

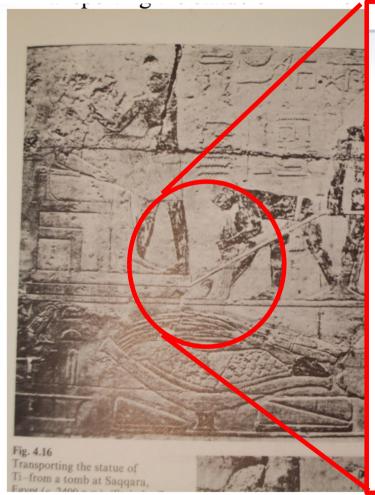
Wear is a system response Wear resistance is not a material property

EPFL

- Concept
- Relevance
- Tribological contacts
- Surfaces
- Contact mechanics
- Friction 6.
- Wear

8. Lubrication

Tribological system


EPFL What is lubrication?

 Reduction in friction and/or wear by interposing a separating film of lubricant between two interacting bodies in relative motion.

Lubricants : liquid, gas, solid, semi-solid, powder

Technology started very early... 2400 BC

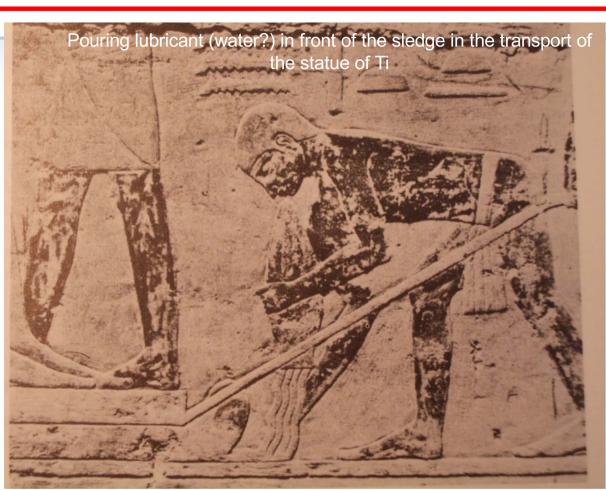
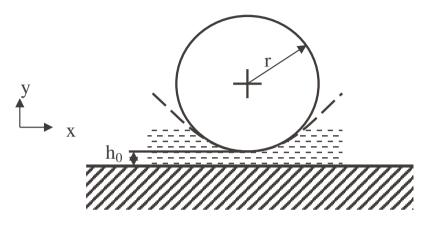
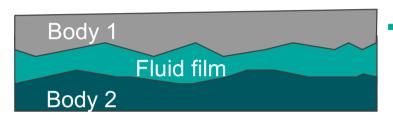



Figure taken from "History of Tribology" by Duncan Dowson (1993)

Formalism for hydrodynamic lubrication: Reynolds equation (1886)

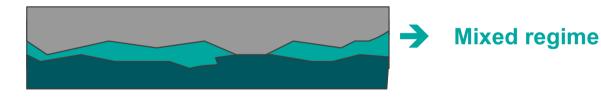
- Based on Navier-Stokes equation for fluid mechanics, it allows to calculate the thickness of the lubricant film formed in the contact.
- Assumptions
 - The fluid is Newtonian
 - The flow is laminar
 - The fluid adheres to the walls
 - The fluid film is incompressible, and of negligible inertia and weight

Formalism for the cylinder/plate contact

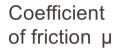

■ Thickness of the film h₀:

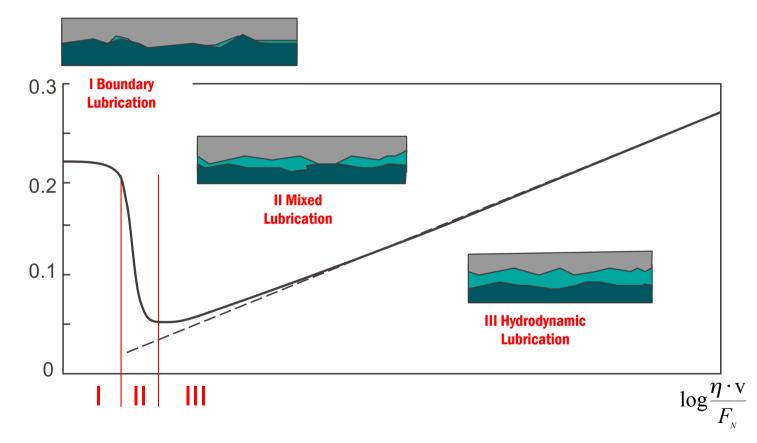
$$h_{\scriptscriptstyle 0} = 2.45 \cdot r \cdot L \cdot \eta \cdot v / F_{\scriptscriptstyle N}$$

L= length of the cylinder η = fluid viscosity v= linear speed of the cylinder relatively to the plate F_N = normal load


Source: Czichos, Tribology, Elsevier (1978)

Regimes of fluid lubrication


The film is thick enough to entirely separate the two surfaces.



The film is not thick enough to separate the two surfaces. The friction is determined by the contacts between asperities.

Fluid lubrication regimes: Stribeck curve

v sliding velocity η viscosity of the lubricant F_N normal load

EPFL Boundary lubrication

- Intimate contact between bodies
- Controlled by the formation of nanometer-thick films either through adsorption or through chemical reaction on the contacting materials.
- Physico-chemical properties of the oil, of its additives, and of the materials are crucial.

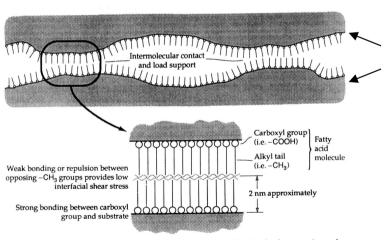


FIGURE 8.4 Low friction mono-molecular layer of adsorbed organic polar molecules on metallic surfaces.

Polar molecules adhere to the surfaces

All gases and fluids have the tendency to adhere to surfaces.

Most of them have very weak bonds to the surface, while others like fatty acids, have strong bonds to metal surfaces.

Back to low speed systems and high loads...

Source: Luo et al. Friction 8(4): 643-665 (2020)

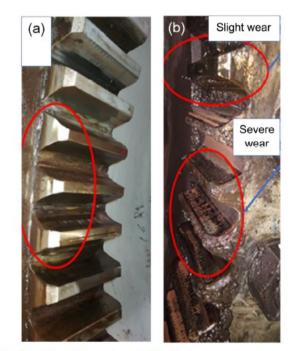
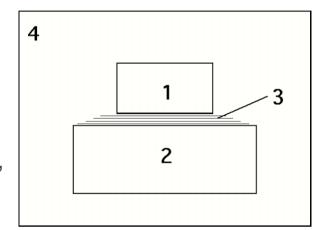
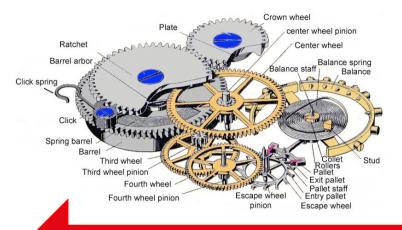
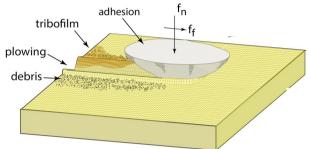


Fig. 17 Wear of gears in a wind turbine.


- 1. Concept
- 2. Relevance
- 3. Tribological contacts
- 4. Surfaces
- 5. Contact mechanics
- 6. Friction
- 7. Wear
- 8. Lubrication

9. Tribological system


A tribology system is characterized by


- Loading:
 - Type of motion, normal force, speed, temperature...
- System structure :
 - Elements: body and counter body 1 et 2, lubricant 3, environment 4
 - Properties: geometry, materials, surfaces

- Interactions between the elements generate friction and wear and therefore may modify the structure of the system. For example:
 - Wear can change the geometry of elements, or
 - Heating due to friction can reduce the strength of a material in contact.

Tribology: multiscale-multiphysics science

mm μm nm

SYSTEM

Mechanics

Tribology and Surfaces Interactions 2623

Geometry, Loads, vibrations Motion Heat, mass transport Lubrication

MACROSCOPIC CONTACT

Material science

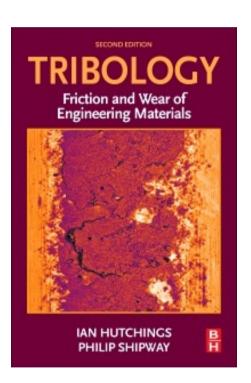
Elastic deformation Roughness Asperity deformation Structural transformation Cracking

MICROSCOPIC CONTACT

Surface chemistry and physics

Surface reactions Third bodies Electrostatic repulsion

La tribologie apporte la richesse de sa complexité


Y. Berthier

EPFL References

Tribology Friction and Wear of Engineering Materials (2nd Edition)

Authors: Ian Hutchings Philip Shipway

ISBN: 9780081009512

Engineering Tribology

J.A. Williams

Oxford University Press (1994) ISBN 0-19-856503-8 G.W.

Engineering Tribology

Stachowiak et A.W. Batchelor

Elsevier (1993) ISBN 0-444-89235-4

Physical Analysis for Tribology

T.F.J Quinn

Cambridge University Press (1991) ISBN 0-521-32602-8

Contact Mechanics

K. L. Johnson

Cambridge University press, (1985) ISBN 0-521-34796-3